Activation of CD137 Signaling Promotes Angiogenesis in Atherosclerosis via Modulating Endothelial Smad1/5‐NFATc1 Pathway
نویسندگان
چکیده
BACKGROUND Excessive angiogenesis is a key feature of vulnerable atherosclerotic plaques, and is considered an independent predictor of cardiovascular risk. CD137 signaling has previously been shown to be involved in atherosclerosis. However, the possible role of CD137 signaling in regulating angiogenesis has not been reported. METHODS AND RESULTS Apolipoprotein E-deficient (ApoE-/-) mice were used as the in vivo model of atherosclerosis. Masson and immunohistochemical analysis of atherosclerotic plaques and Matrigel plug assay were used to evaluate the angiogenesis. Human umbilical vein endothelial cells and mouse brain microvascular endothelial cells were used as in vitro and ex vivo models to study how CD137 signaling affects angiogenesis. Matrigel tube formation assay, mouse aortic ring angiogenesis assay, and migration and proliferation assay were employed to assess angiogenesis. Western blot was used to detect protein expression. We found increased neovessel formation in atherosclerotic plaques of ApoE-/- mice treated with agonist anti-CD137 antibody. Activation of CD137 signaling induced angiogenesis, endothelial proliferation, and endothelial cell migration. CD137 signaling activates the pro-angiogenic Smad1/5 pathway, induces the phosphorylation of Smad1/5 and nuclear translocation of p-Smad1/5, which in turn promotes the expression and translocation of NFATc1. Blocking CD137 signaling with inhibitory anti-CD137 antibody could inhibit this activation and attenuated agonist anti-CD137 antibody-induced angiogenesis. CONCLUSIONS These findings suggest that CD137 signaling is a new regulator of angiogenesis by modulating the Smad1/5-NFATc1 pathway.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملTGF-β1, but not bone morphogenetic proteins, activates Smad1/5 pathway in primary human macrophages and induces expression of proatherogenic genes.
Macrophages are responsible for the control of inflammation and healing, and their malfunction results in cardiometabolic disorders. TGF-β is a pleiotropic growth factor with dual (protective and detrimental) roles in atherogenesis. We have previously shown that in human macrophages, TGF-β1 activates Smad2/3 signaling and induces a complex gene expression program. However, activated genes were ...
متن کاملSnoN facilitates ALK1–Smad1/5 signaling during embryonic angiogenesis
In endothelial cells, two type I receptors of the transforming growth factor β (TGF-β) family, ALK1 and ALK5, coordinate to regulate embryonic angiogenesis in response to BMP9/10 and TGF-β. Whereas TGF-β binds to and activates ALK5, leading to Smad2/3 phosphorylation and inhibition of endothelial cell proliferation and migration, BMP9/10 and TGF-β also bind to ALK1, resulting in the activation ...
متن کاملALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration.
Endoglin, an endothelial cell-specific transforming growth factor-beta (TGF-beta) superfamily coreceptor, has an essential role in angiogenesis. Endoglin-null mice have an embryonic lethal phenotype due to defects in angiogenesis and mutations in endoglin result in the vascular disease hereditary hemorrhagic telangiectasia type I. Increased endoglin expression in the proliferating endothelium o...
متن کاملCD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice.
BACKGROUND Atherosclerosis is a multifactorial disease in which inflammatory processes play an important role. Inflammation underlies lesion evolution at all stages, from establishment to plaque rupture and thrombosis. Costimulatory molecules of the tumor necrosis factor superfamily such as CD40/CD40L and OX40/OX40L have been implicated in atherosclerosis. METHODS AND RESULTS This study shows...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017